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Biological data can be scarce and costly to obtain. The small number of samples
available typically limits statistical power and makes reliable inference of causal
relations extremely difficult. However, we argue that statistical power can be
increased substantially by incorporating prior knowledge and data from diverse
sources. We present a Bayesian framework that combines information from dif-
ferent sources and we show empirically that this lets one. make correct causal
inferences with small sample sizes that otherwise would be impossible.

1 Introduction and Motivation

There is a growing interest in the development and application of new computa-

tional methodologies for analyzing genomic and proteomic data, ranging from

clustering techniques 1 to algorithms for inferring regulatory networks. 2'3'4'5'6

However, most such methods concentrate on discovering regularities in individ-

ual data sets and operate in a knowledge-lean manner. This contrasts sharply

with the strategies of most biologists, who focus on testing specific hypotheses

formulated in the context of biological knowledge and previous studies.

This observation suggests .that biologists would benefit from better com-

putational aids for hypothesis evaluation. Many such tools already exist, but

their statistical power remains generally weak because, like most computational

discovery techniques, they focus on data collected from a single study and typ-

ically ignore available knowledge. In this paper, we demonstrate how one can

utilize prior biological knowledge to substantially increase the statistical power

of causal hypothesis evaluation. Along the way, we address a number of chal-

lenges that this idea raises, including the facts that knowledge may come from

different sources under different experimental conditions, have varying levels

of uncertainty, and involve quantities that are not measured directly.

In the section that follows, we provide a motivating example that describes

a biological hypothesis and relevant background knowledge. We then present

a computational framework and associated algorithm that lets us calculate the

evidence in favor of such a hypothesis given both prior knowledge and data.

We take a Bayesian approach to hypothesis evaluation, since this paradigm
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providesreadymechanismsforcombiningdataandknowledgefrommultiple
sources.Afterthis,wereportexperimentalstudieswiththealgorithmon
syntheticdata,todetermineitsrobustness,and a specific biological hypothesis,

to ensure its relevance. In closing, we review related work on causal models in

biology and suggest some directions for future research in this area.

2 A Motivating Example

Mitogen-activated protein kinase signal transduction pathways process a wide

range of extracellular stimuli to determine a cell's transcriptional response

to environmental changes or inter-cellular messages. One example, the c-Jun

NH2-terminal Idnase 7 (JNK/SAPK) pathway, responds to growth factors (e.g.,

TGF-_ and EGF), cytokines (e.g., TNF and IL-1), and forms of environmen-

tal stress (e.g., osmotic and radiation). It terminates in the phosphorylation

and activation of JUN-fami]y transcription factors, which dimerize with FOS,

ATF, or other JUN factors to form AP-1 leucine-zipper transcription factor

complexes, s which in turn enhance or repress transcription of many immediate-

early genes. The JNK pathway has been implicated in many cellular processes

and pathologies, including embryonic morphogenesis, cancer, immune system

response, apoptotic signaling, cardiac hypertrophic response, neurodegenera-

rive disease, and diabetes complications. ° The JNK pathway is also considered

a premising intervention point for many pathological conditions.

In humans and mice, the JNK family of kinases is derived from three

genes, each of which elicits distinct responses under distinct conditions. _°,11

Jnk3 is found almost exclusively in brain, heart, and testes, whereas Jnkl and

Jnk2 are present in all tissues. 1° :INKs are known to phosphorylate several

components of AP-1 complexes, including c-Jun, JunD, and Atf2, 9 although

the different JNKs differ in their ability to phosphorylate each target. _2,13,1°

The JUN family of transcription factors consists of c-Jun, JunB, JunD, and

the viral oncogene v-Jun. They differ in their activation conditions, the AP-1

complexes in which they participate, and their transcriptional targets. To date,

most laboratory studies involving JNK pathways have studied the involvement

of JNK or JUN as a group, rather than looking at specific JNK or JUN variants.

However, understanding the interactions between specific variants is essential

to untangling functional ro]es of these pathways. We use as our motivating

example the hypothesis that c-Jun is uniquely activated by Jnk2, and therefore

is not activated by Jnkl. _

bFor example, Kallunki et al la,ll found chat Jnk2 binds to c-Jun 25 times more efficiently
than Jnkl, and Gupta 1° found that Jnk2 isoforms tend to have higher affinities for c-Jun
and Atf2 than do Jnkl isoforms. Until recently, no kinase other than JNKs had been found
c_pable of phosphoryl_ting c-2un_ 2 but some evidence has emerged that an EtLK klnase



3 Representing Background Knowledge, Hypotheses, and Data

A computational system that evaluates causal biological hypotheses in the

context of background knowledge and data must first represent such knowledge,

data, and hypotheses. We encode these in terms of relations among discrete

variables that can take on the values + (up-regulated), - (down-regulated), or

0 (unchanged) relative to a control condition. Facts and experimental data are

divided into scenarios, with X_,j denoting the value of variable x_ in scenario

j. When referring to a specific variable by name, we need only the scenario

subscript, e.g., c-Junj for the level of phosphorylated c-Jun in scenario j.

Consider the background knowledge that increasing TPA causes IL-11 ex-

pression to increase 16 [with other factors held constant]. To encode this, we

assign this to a scenario, say j = 1, then define causal conditions, C1 =

{TPA1 = +,TNF-al = 0} and known effects, E1 = {IL-111 = +}. En-

coding of experimental data is done in a similar manner. Consider an ex-

periment in which cells are exposed to an increased amount of TNF-a with

TPA exposure unchanged, and in which expressions of nur77, FL1, and IL-11

increase, whereas expressions of p19 and p53 decrease. Assigning this exper-

iment to scenario j = 2, we encode the experimental conditions or interven-

tions as /2 = {TNF-a2 = +, TPA2 = 0} and the observed effects as D2 =

{EL_nur772 = +, EL_pl92 = -, EL_FL12 = +, EL_IL-112 = +, EL_p532 = -}.

If Jnkl were also knocked out, the experimental conditions would be expressed

as/3 = {TNF-a3 = +,TPA3 = 0,Jnkl3 = 0}, where Jnkl3 = 0 states that

Jnkl is controlled to be unchanged.

Background knowledge also indicates which direct causal links are plausi-

ble. We say that variable xl is a causal parent of x2 when externally changing

xl can effect a change in x2 when all other variables are held Unchanged. We

specify plausible parent relationships, since there may be uncertainty over any

specific causal link. In our example, we specify that each stimulus variable

(TNF- a or TPA) is a plausible parent of every kinase (Jnkl or Jnk2), that

each kinase is a plausible parent of every transcription factor (JunD or c-Jun),

and that each transcription factor is a plausible parent of each expression vari-

able. The hypothesis that Jnk2 uniquely activates c-Jun is represented by the

assertion that there is no link from Jnkl to c-Jun, which may be true or false in

any particular hypothetical causal model. Additional background knowledge

takes the form of numeric assessments, 5, that encode subjective beliefs about

model parameters, including link likelihoods, reliability of causal statements,

expected noise levels, and beliefs that particular links should be positive or

negative influences.

may phosphorylate c-Jun in specific cell types and developmental conditions. 14,15



4 From Background Knowledge to Prior Probabilities

Background knowledge consists of plausible causal links between variables,

causal conditions C, known effects E, and numeric assessments, a. Because

we are working in a Bayesian framework, we must transform all this back-

ground knowledge into prior probabil/ties. Also, we must be able to express

causal relations like "TNF-a (directly or indirectly) up-regulates JunD" and

the results of experimental manipulations like applying TPA and knocking

out Jnkl. Traditional notations for conditional probability do not capture the

distinction between an estimate when a variable is observed and an estimate

when a variable is manipulated. Thus, we introduce the notation P(X[Y : Z)

for the probability of X when Y is believed or observed to be true and Z is

exogenously forced to be true. With our background knowledge consisting of

a, E, and C, we define the prior causal probability as P(.[B, _ : C).

A causal model structure, M, is an acyclic subset of directed links be-

tween variables. Each variable x_ has an associated conditional probability,

P (x_ IparM (x), M, _M), which specifies its probability distribution conditioned

on possible values of its parents, provided x_ is not exogenously controlled. The

conditional probability is parameterized by a set of parameters, 9M, and does

not depend on the scenario, so that together an instance of (M, 6M) defines a

Bayesian network. For example, when M contains a link from Jnkl to JunB,

8M includes the probabilities that JunB is up-regulated, stays the same, or

is down-regulated given that Jnkl is up-regulated. When JunB has multiple

parents according to M, our parameterization combines the contribution from

each incoming link as a weighted mixture. We provide a detailed elucidation of

our specific parameterization in a supplement, i7 We handle causal intervention

by setting the local model to be P(Xi,j = z[parM(X), M, 8 : Xi,j : z,...) -- 1

whenever a variable is exogenously controlled, effectively severing the influence

from the variable's parents, is,3 Following the Bayesian network product rule

and combining scenarios, the joint distribution over all variables under the

causal interventions in C is the product of the conditional probabilities:

P(XIM, OM: C) = HI_P(XI,_IXp_r_(,,),j,M, OM: Cij) (1)

i j

Knowing M and 8M is sufficient for estimating probabilities in situations that

involve hypothetical causal interventions, such as P(c-Jun = +[ELAL-11 =

0, M, _M : TNF-a = +). In terms of M and 8, we rewrite the prior causal

probability as

P(X, M, 9M]E, a: C) = P(M)P(SM [a)P(X[B, M, OM : C) , (2)



whereP(M) expands to k.exp(-IMl) to provide a simplicity bias and P(@Mla)

consists of products of Dirichlet priors. The final term is encoded by the

Bayesian network (M, @M) from Equation (1).

5 Evaluating Causal Biological Hypotheses

As we have noted, biologists are often concerned with evaluating whether ex-

perimental data, encoded by experimental conditions I and observed effects

D, support some particular causaJ hypothesis, H. It is important to distin-

guish between the degree to which (a) the data alone support the hypothesis,

(b) the data and prior knowledge together support the hypothesis, or (c) the
data support the hypothesis in the context of the prior knowledge. Classical

statistical hypothesis testing generally focuses on (a) and Bayesian analysis

usually focuses on (b), whereas we focus on (c). To this end, we first combine

the prior probability of a causal model M with experimental data to determine

the posterior probability that H is true, as in (b), then we utilize this to define

a p value that codifies (c). For example, the scientist may which to publish

results demonstrating how significantly his new data supports (or refutes) a

hypothesis in the context of what was previously known.

In our framework, a causal hypothesis is an expression that is either true

or false as a function of the model M, its parameters 0M, and the values of

latent variables Xf The hypothesis used in our example, (Jnkl, c-Jun) _ M,

is a function only of M. If we let

prior(H) = P(HIE,(_ : C)

posterior(HID ) = P(HID ,m,a : I,C)

the latter expression, the posterior causal probability, can be rewritten as

P(X,M, 8_ID, E,_ : I,C) -- (P(M)P(OMIC_)P(X,D, EIM,#M : I,C) (3)

where (-- 1/ _ / P(M)P(SMI_)P(D, EIM, OM : I,C)dBM
MElt4

and where AJ is the set of possible causal models.

A posterior probability may be an optimal metric to employ in decision

making contexts, but it often does not measure the real concerns in scientific

data analysis. The posterior can be hard to interpret due to subjective assess-

ments in prior knowledge and does not specifically reveal the data's support for

the conclusions. A typical data analysis question is whether the experimental

eWe also let H depend on a hypothetical control condition, which lets us evaluate the
outcomes of hypothetical causal interventions, but we have omitted this case here for the
sake of simplicity.



datasupportthehypothesisin thecontextofpriorknowledge,which,aswe
haveexplained,differsfromwhetherthedataandpriorknowledgetogether
supportthehypothesis.Manyscientistsaremorefamiliarwiththefrequentist
notionofap value, which is conventionally not applicable to such knowledge-

rich contexts. However, by combining the p value with the posterior, we obtain

p(H) = Pr [ posterior(H[D') > posterior(H[D) I D' _ prior(.I-,H ) ]

where D' _ prior(.]-_H) denotes that D' are hypothetical observations drawn

at random from prior(.I-_H ). As in classical statistics, the p value gives the

probability that random observations would appear to support H as much as

the actual data even when H does not hold, i.e., the probability that one can

be misled by the data into thinking H is true when it is actually false. A

p value near zero indicates that the data provide strong support for H. If

p(-,H) _-. O, then they provide strong evidence against the hypothesis.

We utilize a Metropolis-Hastings sampler 19 to compute posterior(HID),

based directly on Equation 3. The basic strategy, which is an instance of

a Markov chain Monte Carlo algorithm, 2° rapidly samples as many plausible

models as it can in a short time. The method samples each model with a

probability that asymptotically approaches its posterior probability, and uses

the resulting counts to estimate how often the hypothesis H is true. We sample

M, 8, and X simultaneously, as opposed to most other approaches to Bayesian

network induction, 2,a which usually use one method to search over possible

model structures, M, a separate nested method (often based on EM) to fit

parameters, 8, and yet different algorithms for inference over X.

Our algorithm begins with a starting model structure M, parameters 8,

and value assignments to all latent variables, X. One point in the sample

space, (M, O, X), can be conceptualized as one possible model of the underlying

biological system and how its latent variables respond in each situation. The

method then proceeds to sample new values for z_ = (M_,St,Xt), based on

z_-l, to converge on the posterior distribution given by Equation 3.

At each step a new point, z _ = (X I, M t, 0'), is randomly proposed according

to a proposal probability g(.Iz__l), and the Hastings acceptance probability

a(=,__,=') rain fll _-(z') g(=,-_l=')}[ _(z_-1) g(='lz_-l)

is computed, where r(z) is the right hand side of Eq. 3, and where z_ is set to

z I with probability a(zt-_, z') and otherwise to z_-l. The Hastings update rule

guarantees detailed balance, 2° and thus that P(zt) -+ It(z) as t -+ oo, provided

that g can reach all points of the sample space.



Wewillnotspecifyindetailourchoiceforg, but note that it involves a

mixture of strategies, one for altering M by adding or deleting links, one for

updating 8, one for changing X, and a few more specialized methods. When a

new sample changes only a few links, parameters, or values, lr(z _) can be up-

dated incrementally, so that computational complexity depends on the number

of changes rather than on the size of the model. Moreover, the normalization

factors for _ and g are not relevant and thus are not computed. Finally, we

follow the standard practice for Markov chain Monte Carlo algorithms and

begin with a 'burn-in' period before tallying statistics (usually 1/10th the to:

tal number of iterations), and we usually tally only every 100th sample in a

100,000 sample run. Our Java-based implementation typically explores about

2,000 proposals per second on a 1.5 GHz Pentium IV, with a typical proposal

acceptance rate around 35 percent.

To compute the p value for a hypothesis H, we first utilize the above algo-

rithm to draw a sample (M, _M, X), enforcing -_H during the process and treat-

ing all variables in D as latent (i.e., ignoring their original observed values). We

then extract D t from the sampled X, use D _ in place of D, and run the above

procedure to compute posterior(HIDe). We repeat this N times, tallying the

mean and variance of posterior(HID _) across the different choices of Dq With

small N, the number of times that posterior(HID' ) > posterior(HID ) is a

poor estimate of the p value, so we instead assume posterior(HID _) is normally
distributed and use the area under the normal curve with the tallied mean and

variance to estimate the probability that posterior(HID' ) > posterior(HID ).

6 Experimental Evaluation

Our basic claim is that incorporating prior knowledge into causal biological

hypothesis evaluation enhances statistical power, therefore making it possible

to infer causal effects that would otherwise be undetectable in small sets of

experimental data. To support this claim, we utilized the hypothetical, but

biologically plausible, model in Figure 1 to generate synthetic data under six

different experimental conditions. These experiments involved one wild type

organism and two knockout conditions, each under stimulation by TPA or

TNF-_. The 'true' model takes the same form as those described earlier, that

is, a causal Bayesian network in which each random variable has the domain

(+, 0,-} and each causal influence is stochastic (with 10% of the observed

values being altered by noise). We generated two sets of data for our evaluation:

the first assumed a model in which Jnkl does not influence c-Jun, whereas the
second assumed this influence does occur.

Our first study aimed to demonstrate that prior background knowledge

lets one obtain statistical support for a causal hypothesis even when some of



Figure 1: A hypothetical regulatory system used to generate synthetic data. The wriab]es
TNF-e and TPA are extracellular stimulus levels controlled by experimental conditions.
Jnkl and Jnk2 denote activatlon levels for the respective kinases, eac_hof which are knocked
out in two of six experiments. JunD "andc-Jun, which denote activation levels of the re-
spective transcription fz_-'tors, are unobserved in the experiments. Variables prefaced with
EL denote the observed expression levels of spedfic genes. Enhancement and suppression
influences are indicated with pluses and rnlnuses_ respectively.

the relevant variables are latent. We used background knowledge about the

JNK/JUN signaling pathways collated from published literature, subdivided

into 12 facts: c-Jun is a transcription factor (i.e., parent) of IL-1116 and p53, 21

JunD is a transcription factor of nut77, 22 TPA up-regnlates IL-11,16 JunD, 23

c-Jun, 24 and nur77, 2= JunD up-regulates nur77, 25 c-Jun up-regulates I_11 I_

and down-regulates p53, 21 and Jnkl and Jnk2 are kinases, so they positively

influence their targets. We used this knowledge in evaluating two hypotheses

/-/1 : There is no direct causal link from Jnkl to c-Jun.

/-/2 : There is a direct causal link from Jnkl to c-Jun.

against the two data sets. We performed each evaluation twice, once using the

entire corpus of background knowledge, and once using no prior background

knowledge (except for the set of variables and plausible links). Table 1 shows

the posterior probabilities and p values that resulted from these runs.

Statistically significant support for the correct hypothesis occurs at the

0.05 level only for the two cases that utilize background knowledge. From the

data alone, neither hypothesis is supported at a significant level. Since c-Jun

and JunD are both latent, the knowledge is necessary to relate them to the

observed data; otherwise, the system finds no support for the hypotheses that
involve those variables.



Table1:Statistical significance levels for causal hypotheses with and without the incorpo-
ration of background knowledge. The first number denotes the posterior probability of each
hypothesis, whereas the second denotes the p value.

True Model All Prior Knowledge No Prior Knowledge

//1 : no link /-/2 : link " H1 : no link //2 : link

No Influence 0.99 / 0.003 0.01 / 0.77 0.42 / 0.46 0.58 / 0.51

Influence 0.03 / 0.500 0.97 / < 10 -7 0.44 / 0.55 0.56 / 0.44

Figure 2 shows the results of a more extensive study, using only data

generated by the model in which Jnkl does not influence c-Jun, that relates

statistical power to the amount of background knowledge available. In these

runs, we ordered the 12 facts randomly and evaluated the hypothesis/-/1 (that

the link is not present) while varying the number of facts given to the system

from 0 to 12. The graphs reveal that a certain amount of background knowl-

edge, about half the corpus, must be available before strong support for the

hypothesis becomes evident. The sLxth fact, which happened to be that c-Jun

influences EL-IL-11, was a major clue the system needed to disambiguate be-

tween two main competing systems-level scenarios that appeared possible prior

to this fact. With nine or more facts, the system detects that the data sets

indeed support the hypothesis statistically at the 0.05 level.

Without this ample biological knowledge, it would have been impossible

to validate or refute the hypotheses from experimental data alone. However,

when combined with such prior information, the data reveal clear support for

the hypothesis at statistically significant levels. These results are consistent

with our central thesis -- that utilizing preexisting background knowledge can

be crucial for effective hypothesis testing when only small samples are available

or the variables are only partially observable.

7 Discussion

Our approach to interpreting biological data contrasts sharply with most com-

putational work in this area. The most common methodology passes available

data to an induction algorithm, which extracts regularities that, hopefully, are

biologically meaningful. However, work in this paradigm typically assumes

data are plentiful and makes little use of background knowledge about biology.

Our framework instead takes advantage of prior knowledge and previous ex-

perimental results in analyses of new observations, increasing their statistical

power even when few samples are available.
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Figure 2: Evidence that statistical power increases with available background knowledge, as

reflected by the number of biological facts provided to the system. The data set supports

the (correct) hypothesis at a significant level (p(H1) < 0.05) only when at least nine of the

12 domain facts are utilized during evaluation.

Despite this crucial difference, our approach has clear links to earlier re-

search in computational biology. The strongest connection is to methods for

learning Bayesian networks, 2,26'2v,2a which also search a space for causal models

that match the experimental data. For the special case in which each possible

link is a hypothesis, we can view these systems as evaluating causal hypotheses

with respect to their support by the data. Previous efforts within this frame-

work have also dealt with the technical complications that arise with latent

variables 2g,27 and causal interventions, 3,18 both addressed in our own work.

Nevertheless, most research on inducing Bayesian networks of biological

systems has taken a knowledge-lean, data-mining approach. Despite a few

exceptions that incorporate knowledge about promoter sequences, 4's°'sl typi-

cal work in this paradigm attempts to construct a causal model from scratch,

rather than evaluate particular causal relations in the context of background

knowledge. Our own previous research on computational methods for revising

causal biological models _ comes much closer, but still emphasizes model dis-

covery rather than hypothesis evaluation. A few researchers s2,3s have focused

on model evaluation as opposed to model discovery. In particular, the JustAid

system 32 also supports the use of experimental data to evaluate qualitative

causal hypotheses, although its underlying algorithms are quite different and

it addresses neuroendocrinology rather than gene regulation.

At a computational level, our approach draws heavily on Markov chain

Monte Carlo techniques for hypothesis testing from the statistical literature. 34

However, our use of p values in a Bayesian context appears novel, in that

the standard approach to Bayesian hypothesis testing involves comparing the

Bayes Factors 34 or Bayesian Information Criteria s5 for alternative models.



Bothapproachesarelegitimatefroma statisticalperspective,butwehave
chosentoutilizep value s because they are generally more familiar to biologists.

Despite our encouraging results, we must extend our computational frame-

work along a number of dimensions before it can become a useful tool for

biologists. For example, we should explore other representations that let us

encode qualitative causal knowledge about biological systems, especially no-

tations that make stronger contact with established biological concepts like

phosphorylation and dimerization. Moreover, we should incorporate this ex-

tended formalism into a user interface that lets biologists visualize and manage

their background knowledge, hypotheses, and experimental data.

Another limitation of our current implementation concerns efficiency, in

that its sampling strategy does not scale well to very large corpora of back-

ground knowledge. Also, since our posterior distributions often exhibit isolated

regions of high probability, achieving a workable mixing rate from the Hast-

ings algorithm is challenging. In future work, we plan to make our inference

methods more efficient by incorporating additional ideas from the literature on

Markov chain Monte Carlo and Metropolis-Hastings algorithms? s'2° Our ap-

proach would also benefit from computational methods that generate plausible

hypotheses automatically by reasoning over biological knowledge. 37 Finally, we

must demonstrate the utility of our framework on data from actual biological

experiments and on hypotheses they were designed to test.

In summary, we have presented a computational approach to evaluating

causal hypotheses that takes advantage of background knowledge and previ-

ous experimental results to increase statistical power. Our framework encodes

biological knowledge, hypotheses, and data in terms of qualitative relations

between variables, and it utilizes Bayesian inference to calculate the evidence

for and against each candidate hypothesis. We illustrated this approach to hy-

pothesis evaluation in the context of knowledge and data about the JNK/JUN

signaling pathways, and we demonstrated the increase in statistical power that

background knowledge provides in this setting. We believe that the techniques

we have described will make future tools for computational biology more robust

and let them use available data more effectively.
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